Evaluation of tear film quality with a double-pass scattering index

PISELLA PJ, HABAY T, NOCHEZ Y
Department of Ophthalmology
University Francois Rabelais
TOURS, FRANCE
Persistent dryness, scratching and burning, foreign body sensation in eyes are signs of dry eye syndrome but are not completely correlated to biomicroscopic and clinical aspects.
Moderate dry eye syndrome

- No corneal staining
- Moderate BUT = 5 sec
- Many subjective visual complaints and blurred vision due to tear film instability which are difficult to objectivate.
Two different approaches

- In order to evaluate corneal surface involvement of dry eye syndrome:
 - Assessment of STRUCTURAL analysis with imaging:
 - reliable, but difficult in practice
 - Assessment of FUNCTIONAL analysis:
 - Visual disturbance of dry eye syndrome before corneal staining.
Introduction

- Dynamic visualization of the corneal tear film quality using different methods:
 - Fluorescein staining and BUT
 - The Shack-Hartmann wavefront sensor
 - Wavefront aberration (objective evaluation of optical quality of the eye)
 - Optical scatter map
Introduction

- Fluorescein staining and BUT are subjective tests.
- No strict correlation between BUT and poor optical quality overall in moderate dry eyes.
- We need more precise dynamic tests to analyse drops efficiency, dry eye evolution, to prevent corneal or optical quality complications.
PURPOSE

- To evaluate correlation between:
 - clinical tear film quality (BUT),
 - biological tear film quality (tear osmolarity),
 - static and dynamic change of Ocular Scattering Index (OSI).
METHODS

- Objective measurement of optical quality of the eye with double-pass based device (OQAS, Visiometrics, Spain)

- More precise information with the DP images than Hartmann-Shack images since the device provide BOTH:
 - aberration
 - and intraocular scattering information.
Optical quality depends on:

- aberrations
- but also scattering

Tear film quality play a role in the optical quality of the human eye and may affect aberrations measurements.

Could OSI measurements be used for an objective evaluation of tear film quality?
Specific software of OQAS

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>OSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>4.8</td>
<td>0.5</td>
<td>4.5</td>
<td>1.0</td>
<td>4.3</td>
<td>1.5</td>
<td>4.6</td>
<td>2.0</td>
<td>5.1</td>
</tr>
<tr>
<td>5.0</td>
<td>5.2</td>
<td>5.5</td>
<td>4.8</td>
<td>6.0</td>
<td>5.2</td>
<td>6.5</td>
<td>5.0</td>
<td>7.0</td>
<td>5.5</td>
</tr>
<tr>
<td>10.0</td>
<td>4.8</td>
<td>10.5</td>
<td>5.2</td>
<td>11.0</td>
<td>5.7</td>
<td>11.5</td>
<td>4.6</td>
<td>12.0</td>
<td>4.6</td>
</tr>
<tr>
<td>15.0</td>
<td>4.7</td>
<td>15.5</td>
<td>5.0</td>
<td>16.0</td>
<td>5.3</td>
<td>16.5</td>
<td>4.7</td>
<td>17.0</td>
<td>4.5</td>
</tr>
</tbody>
</table>

- Tear film quality is the factor which may modify OSI during 20 sec in an eye.

- **4 Measurements:**
 - Mean OSI / Maximal OSI
 - Linear regression of OSI
 - Mean variation of OSI
 - Number and Time of blinking
Correlation OSI and Optical quality
Clinical and biological evaluation

- Clinical evaluation:
 - Subjective discomfort (OSDI© score)
 - Slitlamp examination
 - BUT

- Biological evaluation:
 - Tear osmolarity
Clinical evaluation

<table>
<thead>
<tr>
<th></th>
<th>Minimal dry eye (n=20)</th>
<th>Moderate dry eye (n=13)</th>
<th>Severe dry eye (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional signs</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td>Visual signs</td>
<td>0</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Conjunctiva or corneal staining</td>
<td>0</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>BUT</td>
<td>>10</td>
<td>< 10</td>
<td>< 5</td>
</tr>
</tbody>
</table>
Correlation clinical / biological tear film quality
OSI: mean, maximal or variation?

- Even if mean OSI is higher in severe dry eye than in moderate dry eye, this value can’t be used for intraindividual comparison but is a very good value for interindividual because of the impact of other light scattering surface (cataract +++)

- Variation of OSI is more reliable

<table>
<thead>
<tr>
<th>No dry eye</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal clinical dry eye</td>
</tr>
<tr>
<td>Severe dry eye</td>
</tr>
</tbody>
</table>
Slope coefficient of OSI linear regression and clinical groups

- No dry eye
- Minimal clinical dry eye
- Moderate clinical dry eye
- Severe dry eye
Slope coefficient of OSI linear regression and biological groups

Minimal clinical dry eye

Moderate clinical dry eye

Severe dry eye
Blinking

- Number of blinking during 20 sec
- Huge variation of OSI

Minimal clinical dry eye

Moderate clinical dry eye

Severe dry eye
Objective analysis: impact of drops on tear film quality

- Osmolarity = 284
- No variation of OSI
- No influence of drops on OSI values
Objective analysis: impact of drops on tear film quality

- Osmolarity = 326
- Huge variation of OSI at T0 (Blue curve)
- Decrease of mean OSI at 5 min (green curve) and at 15 min (orange curve)
CONCLUSION

- This new objective method may quantify the blurry vision associated with dry-eye syndrome:
 - Greater variation of OSI, correlated with clinical or biological dry eye syndrome.
 - Greater number of blinking

- This objective method may be useful to detect and follow-up tear-film related patient’s complaints particularly in moderate dry eye syndrome before corneal surface staining.

- At last, this dynamic analysis of the tear film could evaluate the effect of eye drops on tear-film quality and stability.
THANK YOU for YOUR ATTENTION